Development of a Cost Model for Telemedicine Based on Medical Image Processing

Authors

  • Kimia Zarooj Hosseini Shahid Beheshti University of Medical Sciences image/svg+xml Author
  • Amin Golabpour Shahroud University of Medical Sciences image/svg+xml Author

DOI:

https://doi.org/10.22034/TJT.2.4.63

Keywords:

Telemedicine, Artificial Intelligence, Medical Image Processing, Cost-Benefit Analysis

Abstract

Telemedicine has become an essential platform for delivering remote clinical services, particularly in specialties that are dependent on medical imaging. While AI-driven image-processing technologies can enhance diagnostic accuracy and improve workflow efficiency, most current telemedicine evaluations overlook their economic implications. This paper seeks to fill this gap by developing a dedicated economic framework for the costs and benefits of medical image processing. A three-phase approach was adopted. In the first place, a structured search across the major academic databases evaluated whether already published economic models included image-processing costs. Then, technical and financial parameters were integrated into a quantitative break-even model. Finally, experts in telemedicine, medical imaging, and health technology assessment reviewed the model, and its components were evaluated using Content Validity Index scores. The literature review revealed no previous models focused on image-processing costs, whereas expert assessment confirmed strong clarity and relevance in all components of this model. This validated framework provides a comprehensive basis for detailed estimates of implementation expenses, quantified potential savings, and the required patient volume to achieve financial sustainability. Further research should apply and test this model within a variety of clinical contexts.

References

1. Wade VA, Karnon J, Elshaug AG, Hiller JE. A systematic review of economic analyses of telehealth services using real time video communication. BMC health services research. 2010;10(1):233. https://doi.org/10.1186/1472-6963-10-233

2. Desta GT, Gebre DW, Haileyesus MM. The Role of Telemedicine in Improving Patient Outcomes: A Comprehensive Review. International Journal of Medical Information and Knowledge Insights. 2025;1(1):20-7. https://doi.org/10.62951/ijmiki.v1i1.3

3. Gupta R, Gamad R, Bansod PJCE. Telemedicine: A brief analysis. 2014;1(1):966459

4. Magdy M, Hosny KM, Ghali NI, Ghoniemy S. Security of medical images for telemedicine: a systematic review. Multimedia Tools and Applications. 2022;81(18):25101-45. https://doi.org/10.1007/s11042-022-11956-7

5. Castellano NN, Gazquez JA, Salvador RMG, Gracia-Escudero A, Fernandez-Ros M, Manzano-Agugliaro F. Design of a real-time emergency telemedicine system for remote medical diagnosis. Biosystems engineering. 2015;138:23-32. https://doi.org/10.1016/j.biosystemseng.2015.03.017

6. Gupta R, Gamad R, Bansod P. Telemedicine: A brief analysis. Cogent Engineering. 2014;1(1):966459. https://doi.org/10.1080/23311916.2014.966459

7. Saini DJB, Choubey S, Choubey A, Kidwai M, Mehrotra M, Kolekar S, et al. Early detection of glaucoma integrated with deep learning models over medical devices. Biosystems. 2024;238. https://doi.org/10.1016/j.biosystems.2024.105156

8. Scholl I, Aach T, Deserno TM, Kuhlen T. Challenges of medical image processing. Computer science-Research and development. 2011;26(1):5-13. https://doi.org/10.1007/s00450-010-0146-9

9. Zhu Y, Yin X, Wee-Chung Liew A, Tian H, editors. Privacy-Preserving in Medical Image Analysis: A Review of Methods and Applications. Parallel and Distributed Computing, Applications and Technologies; 2025 2025//; Singapore: Springer Nature Singapore;

10. Abdalla PA, Mahmood BS, Hama NR. MyKidney: A Web-based AI tool for automated kidney stone detection from CT imaging. 2025;5. https://doi.org/10.1016/j.inv.2025.100046

11. Ara T, Mishra VP, Bali M, Yenkikar A. Hybrid quantum-classical deep learning framework for balanced multiclass diabetic retinopathy classification. MethodsX. 2025;15. https://doi.org/10.1016/j.mex.2025.103605

12. Boyle L, Moosmann J, Baumann N, Heo S, Magno M. DSORT-MCU: Detecting Small Objects in Real Time on Microcontroller Units. IEEE Sensors J. 2024;24(24):40231-9. https://doi.org/10.1109/JSEN.2024.3425904

13. Cai FFZ, Jiang CQ, Cheung RCC, Lam AHF. An AIoT LoRaWAN Control System With Compression and Image Recovery Algorithm (CIRA) for Extreme Weather. IEEE Internet Things J. 2024;11(20):32701-13. https://doi.org/10.1109/jiot.2024.3450590

14. Chyad HS, Mustafa RA, Haleot RA. An effective protocol and algorithmic approach for disaster management using wireless sensor networks. J Adv Res Dyn Control Syst. 2018;10(13 Special Issue):2405-10

15. Coyner AS, Swan R, Campbell JP, Ostmo S, Brown JM, Kalpathy-Cramer J, et al. Automated Fundus Image Quality Assessment in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. Ophthalmol Retin. 2019;3(5):444-50. https://doi.org/10.1016/j.oret.2019.01.015

16. Gani VKU, Shanmugasundaram N. Cheetah optimized CNN: A bio-inspired neural network for automated diabetic retinopathy detection. AIP Adv. 2025;15(5). https://doi.org/10.1063/5.0264083

17. Garbey M, Lesport Q, Girma H, Öztosun G, Abu-Rub M, Guidon AC, et al. Application of digital tools and artificial intelligence in the Myasthenia Gravis Core Examination. Frontiers in Neurology. 2024;15. https://doi.org/10.3389/fneur.2024.1474884

18. Katada Y, Ozawa N, Masayoshi K, Ofuji Y, Tsubota K, Kurihara T. Automatic screening for diabetic retinopathy in interracial fundus images using artificial intelligence. Intell Based Med. 2020;3-4. https://doi.org/10.1016/j.ibmed.2020.100024

19. Kim J, Kim M, Youn H, Lee S, Kwon S, Park KH. Method for Enhancing AI Accuracy in Pressure Injury Detection Using Real and Synthetic Datasets. Appl Sci. 2024;14(20). https://doi.org/10.3390/app14209396

20. Lesport Q, Joerger G, Kaminski HJ, Girma H, McNett S, Abu-Rub M, et al. Eye Segmentation Method for Telehealth: Application to the Myasthenia Gravis Physical Examination. Sensors. 2023;23(18). https://doi.org/10.3390/s23187744

21. Li FF, Li GX, Yu XX, Zhang ZH, Fu YN, Wu SQ, et al. Integrating prior knowledge with deep learning for optimized quality control in corneal images: A multicenter study. Comput Methods Programs Biomed. 2025;267. https://doi.org/10.1016/j.cmpb.2025.108814

22. Li R, St George RJ, Wang X, Lawler K, Hill E, Garg S, et al. Moving towards intelligent telemedicine: Computer vision measurement of human movement. Comput Biol Med. 2022;147. https://doi.org/10.1016/j.compbiomed.2022.105776

23. Liu Y, Chen J, Hu C, Ma Y, Ge D, Miao S, et al. Vision-Based Method for Automatic Quantification of Parkinsonian Bradykinesia. IEEE Trans Neural Syst Rehabil Eng. 2019;27(10):1952-61. https://doi.org/10.1109/TNSRE.2019.2939596

24. Liu Y, Yan B, Zhang R, Liu K, Jeon G, Yang X. Multi-Scale Mixed Attention Network for CT and MRI Image Fusion. Entropy. 2022;24(6). https://doi.org/10.3390/e24060843

25. Loganathan L, Kaliyaperumal K. A bi-directional associative memory based multiple image watermarking on cover video. Multimedia Tools and Applications. 2016;75(12):7211-56. https://doi.org/10.1007/s11042-015-2642-1

26. Luo Z, Ding X, Hou N, Wan J. A Deep-Learning-Based Collaborative Edge–Cloud Telemedicine System for Retinopathy of Prematurity. Sensors. 2023;23(1). https://doi.org/10.3390/s23010276

27. Maqsood S, Damasevicius R. Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare. Neural Networks. 2023;160:238-58. https://doi.org/10.1016/j.neunet.2023.01.022

28. Merle DA, Heidinger A, Horwath-Winter J, List W, Bauer H, Weissensteiner M, et al. Automated Measurement and Three-Dimensional Fitting of Corneal Ulcerations and Erosions via AI-Based Image Analysis. Curr Eye Res. 2024;49(8):835-42. https://doi.org/10.1080/02713683.2024.2344197

29. Nahen K, Benyamini G, Loewenstein A. Evaluation of a Self-Imaging SD-OCT System for Remote Monitoring of Patients with Neovascular Age Related Macular Degeneration. Klinische Monatsblatter Fur Augenheilkunde. 2020;237(12):1410-8. https://doi.org/10.1055/a-1271-6834

30. Ozbilgin F, Kurnaz Ç, Aydın E. Prediction of Coronary Artery Disease Using Machine Learning Techniques with Iris Analysis. Diagn. 2023;13(6). https://doi.org/10.3390/diagnostics13061081

31. Park SM, Kwon S, Ji Y, Sakthivel H, Leem JW, Kwak Y, et al. Machine reading and recovery of colors for hemoglobin-related bioassays and bioimaging. Sci Adv. 2025;11(23). https://doi.org/10.1126/sciadv.adt4831

32. Prasanth P, Sundarrajan M, Choudhry MD, Akshya A. Enhancing security of medical images using code-based intermittent encryption and convolutional neural network. Comput J. 2025;68(5):539-51. https://doi.org/10.1093/comjnl/bxae130

33. Raizman R, Ramírez García Luna JL, Newaz T, Wang SC, Berry GK, Kong LY, et al. Empowering Patients and Caregivers to Use Artificial Intelligence and Computer Vision for Wound Monitoring: Nonrandomized, Single-Arm Feasibility Study. J Particip Med. 2025;17. https://doi.org/10.2196/69470

34. Rosaline S, Paulraj D. Deep learning-based compression and encryption of CT images for secure telemedicine applications. Evolving Systems. 2025;16(1). https://doi.org/10.1007/s12530-024-09652-y

35. Selcuk Nogay HS, Noǧay NH, Adeli H. Detection of hyperglycemia and hypoglycemia using deep learning from facial images obtained with an AI image generator. Biomed Signal Process Control. 2026;111. https://doi.org/10.1016/j.bspc.2025.108351

36. Shen Y, Zhang H, Fan Y, Lee AP, Xu L. Smart Health of Ultrasound Telemedicine Based on Deeply Represented Semantic Segmentation. IEEE Internet Things J. 2021;8(23):16770-8. https://doi.org/10.1109/JIOT.2020.3029957

37. Simmatis L, Barnett-Tapia C, Marzouqah R, Taati B, Boulos M, Yunusova Y. Reliability of Automatic Computer Vision-Based Assessment of Orofacial Kinematics for Telehealth Applications. Digit Biomarkers. 2022;6(2):71-82. https://doi.org/10.1159/000525698

38. Sirwal SA, Ahmad B, Koul M. Vision-assisted vibrotactile haptic feedback for guidance in teleoperation. Ind Robot. 2025. https://doi.org/10.1108/IR-03-2025-0101

39. Sitnova AV, Valitov ER, Svetozarskiy SN. Application of Deep Learning Algorithms Based on the Multilayer YOLOv8 Neural Network to Identify Fungal Keratitis. Sovremennye Tehnologii V Medicine. 2024;16(4):5-13. https://doi.org/10.17691/stm2024.16.4.01

40. Varshitha DN, Gowrishankar BS, Mulakaluri S, Chaitra NJ, Choudhary S, Varshiya TV, et al. Automated Detection of Polycystic Ovary Syndrome Using Convolutional Neural Networks on Ultrasound Images. Salud Cienc Tecnol. 2025;5. https://doi.org/10.56294/saludcyt20252272.

41. Vieira-Marques P, Almeida R, Teixeira JF, Valente J, Jácome C, Cachim A, et al. InspirerMundi-Remote Monitoring of Inhaled Medication Adherence through Objective Verification Based on Combined Image Processing Techniques. Methods of Information in Medicine. 2021;60:E9-E19. https://doi.org/10.1055/s-0041-1726277

42. Vodrahalli K, Ko J, Chiou AS, Novoa R, Abid A, Phung M, et al. Development and Clinical Evaluation of an Artificial Intelligence Support Tool for Improving Telemedicine Photo Quality. JAMA Dermatol. 2023;159(5). https://doi.org/10.1001/jamadermatol.2023.0091

43. Wang J, Shan C, Liu Z, Zhou S, Shu M. Physiological Information Preserving Video Compression for rPPG. IEEE J Biomedical Health Informat. 2025;29(5):3563-75. https://doi.org/10.1109/JBHI.2025.3526837

44. Wang Z, Yin S, Wang Y, Yin W, Xiang X, Yi Y, et al. Shape-Prior Enhanced Myocardium Segmentation for Cardiac CT Analysis Driven by the Internet of Medical Things. IEEE Internet Things J. 2025;12(16):33945-57. https://doi.org/10.1109/JIOT.2025.3578242

45. Xiong J, Ou W, Liu Z, Gou J, Xiao W, Liu H. GraphPhys: Facial video-based physiological measurement with graph neural network. Comput Electr Eng. 2024;113. https://doi.org/10.1016/j.compeleceng.2023.109022

46. Yousofvand L, Dowlatshahi MB, Beiranvand MP. Pneumonia detection in chest X-ray images using Convolutional Neural Network and fuzzy VIKOR. Iranian Journal of Fuzzy Systems. 2025;22(5):159-79. https://doi.org/10.22111/ijfs.2025.51603.9119

47. Polit DF, Beck CT. The content validity index: are you sure you know what's being reported? Critique and recommendations. Research in nursing & health. 2006;29(5):489-97

48. Scholl I, Aach T, Deserno TM, Kuhlen TJCs-R, development. Challenges of medical image processing. 2011;26(1):5-13

49. Shen Y, Zhang H, Fan Y, Lee AP, Xu L. Smart health of ultrasound telemedicine based on deeply represented semantic segmentation. IEEE Internet Things J. 2020;8(23):16770-8. https://doi.org/10.1109/JIOT.2020.3029957

50. Luo Z, Ding X, Hou N, Wan J. A deep-learning-based collaborative edge–cloud telemedicine system for retinopathy of prematurity. Sensors. 2022;23(1):276. https://doi.org/10.3390/s23010276

51. Deserno TM, Handels H, Maier-Hein KH, Mersmann S, Palm C, Tolxdorff T, et al. Viewpoints on medical image processing: from science to application. Current medical imaging reviews. 2013;9(2):79-88

52. Magdy M, Hosny KM, Ghali NI, Ghoniemy SJMT, Applications. Security of medical images for telemedicine: a systematic review. 2022;81(18):25101-45

53. Ansarian M, Baharlouei Z. Applications and Challenges of Telemedicine: Privacy-Preservation as a Case Study. 2023;26(11):654-61. https://doi.org/10.34172/aim.2023.96

Downloads

Published

2026-01-28

Issue

Section

Original Articles

How to Cite

1.
Zarooj Hosseini K, Golabpour A. Development of a Cost Model for Telemedicine Based on Medical Image Processing. J Telemed. [Internet]. 2026 Jan. 28 [cited 2026 Feb. 1];2(4):04-16. Available from: https://tjtmed.com/index.php/tjt/article/view/63

Similar Articles

11-20 of 34

You may also start an advanced similarity search for this article.