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ABSTRACT

Telemedicine has become an essential platform for delivering remote clinical
services, particularly in specialties that are dependent on medical imaging. While
Al-driven image-processing technologies can enhance diagnostic accuracy and
improve workflow efficiency, most current telemedicine evaluations overlook
their economic implications. This paper seeks to fill this gap by developing a
dedicated economic framework for the costs and benefits of medical image
processing. A three-phase approach was adopted. In the first place, a structured
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search across the major academic databases evaluated whether already
published economic models included image-processing costs. Then, technical and
financial parameters were integrated into a quantitative break-even model.
Finally, experts in telemedicine, medical imaging, and health technology
assessment reviewed the model, and its components were evaluated using Content
Validity Index scores. The literature review revealed no previous models focused
on image-processing costs, whereas expert assessment confirmed strong clarity
and relevance in all components of this model. This validated framework provides
a comprehensive basis for detailed estimates of implementation expenses,
quantified potential savings, and the required patient volume to achieve financial
sustainability. Further research should apply and test this model within a variety
of clinical contexts.
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INTRODUCTION

Telemedicine has emerged as a significant innovation in modern healthcare,

addressing the shortage of medical specialists and reducing disparities in access to clinical
services, particularly in rural and underserved regions. By leveraging information and
communication technologies, telehealth enables remote clinical evaluation and expert
consultation without the need for in-person visits. Telehealth broadly refers to the delivery
of healthcare services through information and communication technology (ICT) (1), with
one of its primary objectives being the provision of timely and accurate diagnoses
regardless of patient location (2).

The rapid expansion of digital technologies has positioned artificial intelligence (Al) as a
transformative element in telemedicine. Advanced machine learning and deep learning
methods support automated, precise analysis of clinical data, improving diagnostic
reliability, reducing human error, and enhancing operational efficiency across
telemedicine workflows (3-5). Among Al applications, medical image processing is
particularly critical due to its central role in remote diagnostics. With the increasing volume
and complexity of imaging data, Al-driven image analysis enables the extraction of
clinically relevant features and improves diagnostic confidence, while advancements in
digital infrastructure have facilitated the transmission of large medical image files essential
to telesurgery and teleconsultation (4, 6). Despite these advancements, the economic
implications of incorporating computationally intensive image-processing technologies
into telemedicine systems remain insufficiently addressed in the existing literature (7).

Medical image processing requires substantial computational resources due to the size and
complexity of imaging data and the need for high diagnostic precision (8). Furthermore,
because medical images contain highly sensitive patient information, ethical and
regulatory requirements often prohibit processing on public cloud servers, as external data
transfers increase the risk of privacy breaches (9). Consequently, healthcare institutions
must deploy secure, high-performance, on-premises infrastructure to support image-
processing tasks, thereby significantly increasing the initial implementation cost of
telemedicine systems that rely on medical imaging.
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One of the fundamental challenges in implementing telemedicine systems is achieving
economic efficiency and reducing operational costs. However, in the context of artificial
intelligence, particularly medical image processing, the need for high-performance
computational infrastructure, dedicated servers, and advanced hardware substantially
increases initial and ongoing costs. Therefore, evaluating the break-even point between the
costs and the benefits of integrating image processing technologies into telemedicine
becomes essential for determining their economic feasibility and long-term sustainability.

Objectives

This study first investigated whether an established economic framework or cost model
for such telemedicine systems has been previously proposed in the literature.
Subsequently, based on the characteristics of image-processing algorithms, user demand,
hardware requirements, and available economic parameters, a quantitative break-even
analysis model was developed to provide a clear and evidence-based foundation for
assessing the financial justification of deploying image-processing-enabled telemedicine
platforms.

METHODS

This study employed a design-science and applied economic-modeling approach to
develop and validate a cost model for telemedicine systems incorporating medical image
processing. This study was conducted in three methodological phases. In the first phase, a
structured search was conducted across major academic databases to determine whether
previous studies have considered the costs of medical image processing in the economic
evaluations of telemedicine systems. In the second phase, the technical and operational
parameters influencing image-processing costs were identified and defined, and, based on
these parameters, a break-even equation was formulated to assess the financial feasibility
of implementing image-processing—enabled telemedicine systems. In the third phase, the
proposed model and its break-even equation were evaluated and validated by experts in
telemedicine, medical imaging, and health technology assessment to ensure technical
accuracy, clinical relevance, and economic validity.

Phase 1: Systematic Literature Review

To determine whether previous studies have considered the costs associated with image
processing in the economic evaluation of telemedicine systems, a structured search was
conducted across PubMed, Scopus, and Web of Science using a comprehensive set of
keywords related to artificial intelligence, telemedicine, and medical image processing.
The search was performed in January 2025, with no restrictions on publication year, and
was limited to English-language peer-reviewed articles. The complete search strategy and
database queries are provided in Appendix 1.

Studies were included if they: (1) reported an economic evaluation, cost analysis, cost
model, or financial assessment related to telemedicine; (2) involved telehealth or
telemedicine systems that utilized medical imaging or image-processing workflows; (3)
provided information on technical, computational, or infrastructure-related costs; (4)
incorporated artificial intelligence, machine learning, or image-analysis techniques within
telemedicine contexts; (5) were published as full-text peer-reviewed research articles; and
(6) were written in English.
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Studies were excluded if they: (1) reported only clinical diagnostic outcomes without any
economic or cost-related analysis; (2) described telemedicine systems without the
involvement of medical image processing; (3) were non-research publications such as
commentaries, editorials, letters, or conference abstracts; (4) lacked accessible full text;
(5) focused solely on the development of technical algorithms without discussing
economic implications; or (6) were published in languages other than English.

The initial database search yielded 742 records. After removal of 312 duplicates, 430
unique studies remained for title and abstract screening. At this stage, 374 studies were
excluded for failing to meet the predefined criteria. Full-text assessment was performed
for 56 articles, of which 18 were excluded due to insufficient cost information, lack of
relevance to image-processing workflows, or incomplete data availability. Ultimately, 38
studies met all inclusion criteria and were incorporated into the final evidence synthesis
(7, 10-46). Notably, none of these studies addressed the computational costs of medical
image processing or incorporated these costs into telemedicine economic evaluations,
underscoring a substantial gap in the literature and the need for the cost model developed
in this study.

Phase 2: Cost Model Development and Mathematical Derivation

The cost calculation model incorporates the primary technical and operational factors
involved in developing and deploying a medical image-processing system. These factors
include the total duration required for software development, the number of programmers
participating in the project, the average compensation paid to each developer, the cost of
acquiring or renting the necessary server infrastructure, and the expenses associated with
maintaining and supporting the server environment. Together, these components
determine the initial investment required to implement the system, which underlies the
subsequent economic evaluation.

In the second step of the model, the diagnostic performance of the Al-based image-
processing algorithm is compared with the guideline-based standard approach to determine
the extent to which the algorithm reduces diagnostic errors or delays. The economic
consequence of an incorrect or delayed diagnosis is then estimated as the additional
treatment cost per affected patient, and an average incremental cost is used to account for
variability across individuals. To quantify the financial impact of improved diagnostic
accuracy, the Al algorithm's reduction in diagnostic errors is calculated for a cohort of 100
patients. The avoided diagnostic errors are multiplied by the average cost per error to
obtain the total economic benefit generated by using the Al-based software. The variables
and formulas used to compute the economic costs and benefits of deploying the software
for 100 telemedicine visits are presented below.

In the final step of the economic model, the total implementation cost of the software is
compared with the financial benefit generated per 100 telemedicine visits. To determine
the number of patient visits required to reach the break-even point, the total system cost is
divided by the economic benefit per block of 100 visits. The resulting value indicates how
many sets of 100 patients are needed for the system to financially recover its initial
investment. This value is then multiplied by 100 to identify the total number of patients
required to reach the break-even point. To estimate the time needed for cost recovery, the
average daily number of telemedicine visits is calculated, and the total required number of
patients is divided by the average daily visit volume. This yields the number of days
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necessary for the system to achieve financial break-even. All symbols, definitions, units,
and sources used in the economic model are summarized in Table 1 to enhance clarity and
ensure reproducibility of the derivation process.

TABLE I. NOMENCLATURE OF VARIABLES USED IN THE ECONOMIC COST MODEL

Symbol Definition Unit Source
T Duration of software Months Engineering estimation
d development based on project timeline
N Number of programmers involved Count Project team structure
p
S Average salary or hourly rate per Local Market compensation
p programmer currency rates
C Cost of acquiring or renting server Local Hardware vendor pricing
s hardware currency
C Server maintenance and Local Vendor or IT department
m operational support cost currency estimate
Total Cost Total system development and Local Computed from the
infrastructure cost currency model
Diagnostic error rate under Percentage Literature-based estimate
Mg e
guide guideline-based care
r Diagnostic error rate using the Al Percentage  Algorithm validation
Al algorithm results
Ar Improvement in diagnostic Percentage r r
performance (error reduction) guide " " Al
C Average cost of an incorrect or Local Healthcare economic
err delayed diagnosis currency studies
B Number of 100-visit blocks Count Computed from the
required to reach break-even model
N Total number of patient visits Visits 100xB
breakeven required for break-even
V Average number of telemedicine Visits/day Operational clinic data
day visits per day
T Time required to reach break- Days Nbreakeven / Vday
breakeven even

The economic model sequentially computes the total system cost, the diagnostic error-
reduction benefit, and the required number of patient visits and days to achieve financial
break-even. The pseudo-code for this computational process is presented in Figure 1.
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INPUT:
Ta,No, So, Cs, Can, Fyuige, Tary Cerr, Vaay

STEP 1: Compute total system implementation cost

Total Cost=(T, xN ;xS )+C +C_

STEP 2: Compute diagnostic error reduction

Ar = rguide — I

Avoided Errors,,, =100- Ar
S,00 =100-Ar-C,,

_ Total Cost

- S100

STEP 3: Compute break-even patient volume

N =100xB

B

breakeven

STEP 4: Compute time required to reach break-even

T — M
breakeven — V
day

OUTPUT:
TotalCost

FIGURE I. PSEUDO-CODE REPRESENTATION OF THE ECONOMIC BREAK-EVEN CALCULATION MODEL

Phase 3: Expert Validation Using Content Validity Index (CVI)

In the third phase of the study, the proposed economic model was evaluated by nine experts
with professional experience in medical image processing and telemedicine applications.
These experts assessed the relevance, clarity, and adequacy of each component of the
model using a Content Validity Index (CV1)(47). A four-point Likert scale was employed,
in which 1 = not relevant, 2 = somewhat relevant, 3 = quite relevant, and 4 = highly
relevant. For each item, the CVI was calculated as the proportion of experts who assigned
a rating of 3 or 4. According to established CVI guidelines, a minimum CVI value of 0.78
was considered acceptable for validation when the number of experts ranged from 6 to 10.
Items scoring below this threshold were revised or refined based on expert feedback to
ensure the accuracy and appropriateness of the final model.

Ethical Statement

This study did not involve human participants or identifiable data and, therefore, did not
require ethical approval.

RESULTS

All components related to the model's structural and computational integrity achieved
strong expert agreement and exceeded the required CVI threshold. The cost calculation
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framework, including the identification and integration of technical and operational
parameters, received unanimous approval (CVI = 1.00), indicating that experts found the
approach comprehensive and methodologically sound. Likewise, the model's
applicability to telemedicine environments and the overall usefulness of the framework
in supporting economic decision-making were fully endorsed by all reviewers. The
detailed CVI scores for all evaluated components of the model are presented in Table 2.

TABLE Ill. CONTENT VALIDITY INDEX (CVI) SCORES FOR THE PROPOSED ECONOMIC MODEL

COMPONENTS
No. Model Component Evaluated Rating 3 or 4 CVI Value Acceptable (> 0.78)
1 Definition of cost parameters 8/9 0.89 Accepted
2 Structure of the cost calculation model 9/9 1.00 Accepted
3 Accuracy of economic benefit estimation 8/9 88.89 Accepted
4 Clarity of the break-even formula 9/9 0.89 Accepted
5 Logical consistency of variable definitions 7/9 0.78 Accepted
6 Applicability of the model in telemedicine 9/9 1.00 Accepted
7 Clinical relevance of error-reduction metrics 8/9 88.89 Accepted
8 Suitability of computational workflow 8/9 88.89 Accepted
9 Overall usefulness of the model 9/9 1.00 Accepted

All items supporting the model's structural and computational validity achieved high
expert consensus and exceeded the minimum threshold for CVI. The cost calculation
framework, including the identification and integration of technical and operational
parameters, received unanimous approval, with a CVI of 1.00 for comprehensiveness and
methodological soundness. Similarly, the model's applicability in telemedicine
environments and the overall usefulness of the framework for economic decision-making
were fully supported by all reviewers.

Items related to the clarity of the break-even formula, the clinical relevance of error-
reduction metrics, and the suitability of the computational workflow demonstrated
similarly strong validation scores, with CVI values ranging from 0.89 to 0.89. These high
ratings denote expert consensus that the model effectively captures the essential financial
mechanisms required for evaluating Al-based image-processing systems in telemedicine.
The accuracy of the economic benefit estimation also received a high CVI score of 0.89,
reinforcing confidence in the model's analytical foundations.

DISCUSSION

In this study, a comprehensive and innovative model was developed for the economic
evaluation of telemedicine systems based on medical image processing. For the first time,
the model integrates technical variables, including software development duration,
number of programmers, server costs, and Al-based diagnostic error reduction, with
economic indicators. The model not only calculates the total implementation cost but also
estimates the break-even point and the number of consultations required to achieve a
return on investment. Expert assessments demonstrated that all components of the model
are acceptable in terms of variable accuracy, computational structure, and usability in
clinical settings, and in many cases, they were rated as excellent. Therefore, it can serve
as a reliable decision-making tool in the digital health domain.
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The findings indicate that implementing telemedicine systems based on medical image
processing requires highly powerful computational and storage infrastructures, which
significantly increase both the initial and maintenance costs of the system. This result
aligns with the study by Scholl et al. (2011), who emphasized that medical image
processing demands expensive servers and computing equipment due to high data
volumes and algorithmic complexity. (48) Furthermore, evidence from studies in the field
of tele-ultrasonography shows that the use of deep learning models requires high-
performance GPUs and substantial bandwidth, imposing considerable financial burdens
(49). However, our findings are not fully consistent with the perspective of Luo et al.
(2023), who suggest that employing edge—cloud architectures can relatively reduce costs
(50). Even with edge processing, the need for central servers for final processing and data
integration persists, and the possibility of significantly eliminating or reducing centralized
infrastructure remains limited.

Within the framework of the economic model developed in this study, it was found that
the majority of the initial investment is allocated to the development of specialized
software and the provision of computational infrastructure. This finding is consistent with
the results of Deserno et al. (2013), who demonstrated that the increasing volume of
medical imaging data necessitates highly powerful servers and computing environments,
advanced software tools, and high-performance storage infrastructure (51). Studies by
Campbell et al. (2019) and Garbey et al. (2024) also indicate that designing image
analysis software for telemedicine requires relatively substantial computational resources
and development infrastructure. Therefore, the cost share of software and computational
capacity represents a significant portion of the initial investment

There are other important costs, such as bandwidth and data transmission costs, data costs,
recruitment and retention costs, equipment depreciation and upgrades, regulatory
compliance, and user training, and these secondary yet significant costs affect all
telemedicine projects economically. These findings corroborate those presented by
Rosaline and Paulraj (2025), who also highlighted the need for expensive, high-capacity
network infrastructure to transmit large volumes of imaging data, although some of these
costs may be mitigated by smart compression. Moreover, expenses related to compliance
with regulations such as HIPAA and GDPR, as well as the need for personnel training,
play a crucial role in determining the initial break-even point of such systems (52, 53).

This study demonstrates that the economic evaluation of medical image-based
telemedicine systems should extend beyond initial costs to include technical,
infrastructural, and operational factors such as software development, computational
infrastructure, maintenance, data security, regulatory compliance, and user training. The
proposed model integrates these variables into a quantitative framework, enabling precise
estimation of the break-even point, return on investment, and financial reliability.
Findings also highlight that even with distributed and edge computing technologies,
reliance on central infrastructure and high-performance resources remains significant, and
relative savings cannot replace essential hardware and software investments. Overall, the
study emphasizes the need for tailored economic models that comprehensively capture
all components of telemedicine systems and serve as practical, reliable tools for strategic
decision-making.
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Limitations

This study had several limitations. The proposed cost model is based on theoretical
parameters rather than real implementation data, which may limit its applicability in
different telemedicine settings. Moreover, healthcare costs, reimbursement structures,
and clinical guidelines vary widely across regions and institutions, making it impossible
to achieve precise, fully generalizable cost estimates. The economic and technical
variables used—such as server cost, programmer workload, and diagnostic error
reduction—are averaged estimates and may differ in real-world scenarios. The literature
search was also limited to major English-language databases, potentially missing studies
from other sources. Additionally, expert validation was conducted with a relatively small
group of specialists, which may not reflect broader professional perspectives.

CONCLUSION

The economic evaluation of remote medical image-based telemedicine systems
involves more than just the initial costing of the software and the development of
computing architecture. There are ongoing costs. There are ongoing costs for maintaining
and updating the software and architecture, as well as regulatory oversight. Even with
edge and distributed computing, there must still be a central computing resource. The
model suggested offers a good balance and converges toward the practical, allowing a
robust assessment of multiple, interrelated economic targets such as ROI, break-even, and
financial viability and reliability.
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