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ABSTRACT 

 

 Telemedicine has become an essential platform for delivering remote clinical 

services, particularly in specialties that are dependent on medical imaging. While 

AI-driven image-processing technologies can enhance diagnostic accuracy and 

improve workflow efficiency, most current telemedicine evaluations overlook 

their economic implications. This paper seeks to fill this gap by developing a 

dedicated economic framework for the costs and benefits of medical image 

processing. A three-phase approach was adopted. In the first place, a structured 

 
* Correspondence to: Amin Golabpour, Department of Health Informatics Technology, School of Allied Medical 
Sciences, Shahroud University of Medical Sciences, Shahroud, Iran Email: a.golabpour@shmu.ac.ir        

 

 

About the authors: 

Kimia Zarooj Hosseini; MSc student in Medical Informatics, Student Research Committee, Department of 

Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of 

Medical Sciences, Tehran, Iran.   

Amin Golabpour; Department of Health Informatics Technology, School of Allied Medical Sciences, Shahroud 

University of Medical Sciences, Shahroud, Iran.   

 

 

 

This is an open access article distributed under the terms of the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction, provided the original author(s) and source 

are credited. 

 

mailto:a.golabpour@shmu.ac.ir
mailto:a.golabpour@shmu.ac.ir


 

Hosseini et al., A cost model for telemedicine, Autumn 2025 2(4), 04-16 

5 
 

https://doi.org/10.22034/TJT.2.4.63 

https://tjtmed.com 

#tjtmed 

search across the major academic databases evaluated whether already 

published economic models included image-processing costs. Then, technical and 

financial parameters were integrated into a quantitative break-even model. 

Finally, experts in telemedicine, medical imaging, and health technology 

assessment reviewed the model, and its components were evaluated using Content 

Validity Index scores. The literature review revealed no previous models focused 

on image-processing costs, whereas expert assessment confirmed strong clarity 

and relevance in all components of this model. This validated framework provides 

a comprehensive basis for detailed estimates of implementation expenses, 

quantified potential savings, and the required patient volume to achieve financial 

sustainability. Further research should apply and test this model within a variety 

of clinical contexts.  

Keywords: Telemedicine, Medical Image Processing, Artificial Intelligence, Cost-Benefit Analysis 

INTRODUCTION 

Telemedicine has emerged as a significant innovation in modern healthcare, 

addressing the shortage of medical specialists and reducing disparities in access to clinical 

services, particularly in rural and underserved regions. By leveraging information and 

communication technologies, telehealth enables remote clinical evaluation and expert 

consultation without the need for in-person visits. Telehealth broadly refers to the delivery 

of healthcare services through information and communication technology (ICT) (1), with 

one of its primary objectives being the provision of timely and accurate diagnoses 

regardless of patient location (2). 

The rapid expansion of digital technologies has positioned artificial intelligence (AI) as a 

transformative element in telemedicine. Advanced machine learning and deep learning 

methods support automated, precise analysis of clinical data, improving diagnostic 

reliability, reducing human error, and enhancing operational efficiency across 

telemedicine workflows (3-5). Among AI applications, medical image processing is 

particularly critical due to its central role in remote diagnostics. With the increasing volume 

and complexity of imaging data, AI-driven image analysis enables the extraction of 

clinically relevant features and improves diagnostic confidence, while advancements in 

digital infrastructure have facilitated the transmission of large medical image files essential 

to telesurgery and teleconsultation (4, 6). Despite these advancements, the economic 

implications of incorporating computationally intensive image-processing technologies 

into telemedicine systems remain insufficiently addressed in the existing literature (7). 

Medical image processing requires substantial computational resources due to the size and 

complexity of imaging data and the need for high diagnostic precision (8). Furthermore, 

because medical images contain highly sensitive patient information, ethical and 

regulatory requirements often prohibit processing on public cloud servers, as external data 

transfers increase the risk of privacy breaches (9). Consequently, healthcare institutions 

must deploy secure, high-performance, on-premises infrastructure to support image-

processing tasks, thereby significantly increasing the initial implementation cost of 

telemedicine systems that rely on medical imaging. 
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One of the fundamental challenges in implementing telemedicine systems is achieving 

economic efficiency and reducing operational costs. However, in the context of artificial 

intelligence, particularly medical image processing, the need for high-performance 

computational infrastructure, dedicated servers, and advanced hardware substantially 

increases initial and ongoing costs. Therefore, evaluating the break-even point between the 

costs and the benefits of integrating image processing technologies into telemedicine 

becomes essential for determining their economic feasibility and long-term sustainability.  

Objectives 

This study first investigated whether an established economic framework or cost model 

for such telemedicine systems has been previously proposed in the literature. 

Subsequently, based on the characteristics of image-processing algorithms, user demand, 

hardware requirements, and available economic parameters, a quantitative break-even 

analysis model was developed to provide a clear and evidence-based foundation for 

assessing the financial justification of deploying image-processing-enabled telemedicine 

platforms.  

METHODS 

This study employed a design-science and applied economic-modeling approach to 

develop and validate a cost model for telemedicine systems incorporating medical image 

processing. This study was conducted in three methodological phases. In the first phase, a 

structured search was conducted across major academic databases to determine whether 

previous studies have considered the costs of medical image processing in the economic 

evaluations of telemedicine systems. In the second phase, the technical and operational 

parameters influencing image-processing costs were identified and defined, and, based on 

these parameters, a break-even equation was formulated to assess the financial feasibility 

of implementing image-processing–enabled telemedicine systems. In the third phase, the 

proposed model and its break-even equation were evaluated and validated by experts in 

telemedicine, medical imaging, and health technology assessment to ensure technical 

accuracy, clinical relevance, and economic validity.  

Phase 1: Systematic Literature Review 

To determine whether previous studies have considered the costs associated with image 

processing in the economic evaluation of telemedicine systems, a structured search was 

conducted across PubMed, Scopus, and Web of Science using a comprehensive set of 

keywords related to artificial intelligence, telemedicine, and medical image processing. 

The search was performed in January 2025, with no restrictions on publication year, and 

was limited to English-language peer-reviewed articles. The complete search strategy and 

database queries are provided in Appendix 1. 

Studies were included if they: (1) reported an economic evaluation, cost analysis, cost 

model, or financial assessment related to telemedicine; (2) involved telehealth or 

telemedicine systems that utilized medical imaging or image-processing workflows; (3) 

provided information on technical, computational, or infrastructure-related costs; (4) 

incorporated artificial intelligence, machine learning, or image-analysis techniques within 

telemedicine contexts; (5) were published as full-text peer-reviewed research articles; and 

(6) were written in English. 
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Studies were excluded if they: (1) reported only clinical diagnostic outcomes without any 

economic or cost-related analysis; (2) described telemedicine systems without the 

involvement of medical image processing; (3) were non-research publications such as 

commentaries, editorials, letters, or conference abstracts; (4) lacked accessible full text; 

(5) focused solely on the development of technical algorithms without discussing 

economic implications; or (6) were published in languages other than English. 

The initial database search yielded 742 records. After removal of 312 duplicates, 430 

unique studies remained for title and abstract screening. At this stage, 374 studies were 

excluded for failing to meet the predefined criteria. Full-text assessment was performed 

for 56 articles, of which 18 were excluded due to insufficient cost information, lack of 

relevance to image-processing workflows, or incomplete data availability. Ultimately, 38 

studies met all inclusion criteria and were incorporated into the final evidence synthesis 

(7, 10-46). Notably, none of these studies addressed the computational costs of medical 

image processing or incorporated these costs into telemedicine economic evaluations, 

underscoring a substantial gap in the literature and the need for the cost model developed 

in this study. 

Phase 2: Cost Model Development and Mathematical Derivation 

The cost calculation model incorporates the primary technical and operational factors 

involved in developing and deploying a medical image-processing system. These factors 

include the total duration required for software development, the number of programmers 

participating in the project, the average compensation paid to each developer, the cost of 

acquiring or renting the necessary server infrastructure, and the expenses associated with 

maintaining and supporting the server environment. Together, these components 

determine the initial investment required to implement the system, which underlies the 

subsequent economic evaluation. 

In the second step of the model, the diagnostic performance of the AI-based image-

processing algorithm is compared with the guideline-based standard approach to determine 

the extent to which the algorithm reduces diagnostic errors or delays. The economic 

consequence of an incorrect or delayed diagnosis is then estimated as the additional 

treatment cost per affected patient, and an average incremental cost is used to account for 

variability across individuals. To quantify the financial impact of improved diagnostic 

accuracy, the AI algorithm's reduction in diagnostic errors is calculated for a cohort of 100 

patients. The avoided diagnostic errors are multiplied by the average cost per error to 

obtain the total economic benefit generated by using the AI-based software. The variables 

and formulas used to compute the economic costs and benefits of deploying the software 

for 100 telemedicine visits are presented below. 

In the final step of the economic model, the total implementation cost of the software is 

compared with the financial benefit generated per 100 telemedicine visits. To determine 

the number of patient visits required to reach the break-even point, the total system cost is 

divided by the economic benefit per block of 100 visits. The resulting value indicates how 

many sets of 100 patients are needed for the system to financially recover its initial 

investment. This value is then multiplied by 100 to identify the total number of patients 

required to reach the break-even point. To estimate the time needed for cost recovery, the 

average daily number of telemedicine visits is calculated, and the total required number of 

patients is divided by the average daily visit volume. This yields the number of days 
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necessary for the system to achieve financial break-even. All symbols, definitions, units, 

and sources used in the economic model are summarized in Table 1 to enhance clarity and 

ensure reproducibility of the derivation process. 

 

TABLE I. NOMENCLATURE OF VARIABLES USED IN THE ECONOMIC COST MODEL 

 

Symbol Definition Unit Source 

dT  
Duration of software 

development 

Months Engineering estimation 

based on project timeline 

pN  
Number of programmers involved Count Project team structure 

pS  
Average salary or hourly rate per 

programmer 

Local 

currency 

Market compensation 

rates 

sC  
Cost of acquiring or renting server 

hardware 

Local 

currency 

Hardware vendor pricing 

mC  
Server maintenance and 

operational support cost 

Local 

currency 

Vendor or IT department 

estimate 

Total Cost Total system development and 

infrastructure cost 

Local 

currency 

Computed from the 

model 

guider  
Diagnostic error rate under 

guideline-based care 

Percentage Literature-based estimate 

AIr  
Diagnostic error rate using the AI 

algorithm 

Percentage Algorithm validation 

results 

r  
Improvement in diagnostic 

performance (error reduction) 

Percentage 
guider -

AIr  

errC  
Average cost of an incorrect or 

delayed diagnosis 

Local 

currency 

Healthcare economic 

studies 

B Number of 100-visit blocks 

required to reach break-even 

Count Computed from the 

model 

breakevenN  
Total number of patient visits 

required for break-even 

Visits 100×B 

dayV  
Average number of telemedicine 

visits per day 

Visits/day Operational clinic data 

breakevenT  
Time required to reach break-

even 

Days Nbreakeven / Vday 

The economic model sequentially computes the total system cost, the diagnostic error-

reduction benefit, and the required number of patient visits and days to achieve financial 

break-even. The pseudo-code for this computational process is presented in Figure 1. 
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INPUT: 

    Td , Np ,  Sp , Cs ,  Cm ,  rguide ,  rAI , Cerr , Vday  

 

STEP 1: Compute total system implementation cost 

    

Total Cost ( )d p p s mT N S C C=   + +  

 

STEP 2: Compute diagnostic error reduction 

    guide AIr r r = −  

    
100Avoided Errors 100 r=   

   
100 err100S r C=    

    

100

Total Cost
B

S
=                  

STEP 3: Compute break-even patient volume 

    
breakeven 100N B=   

 

STEP 4: Compute time required to reach break-even 

    
breakeven

breakeven

day

N
T

V
=  

OUTPUT: 

    TotalCost 

    Nbreakeven 

    Tbreakeven 

FIGURE I. PSEUDO-CODE REPRESENTATION OF THE ECONOMIC BREAK-EVEN CALCULATION MODEL 

 

Phase 3: Expert Validation Using Content Validity Index (CVI) 

In the third phase of the study, the proposed economic model was evaluated by nine experts 

with professional experience in medical image processing and telemedicine applications. 

These experts assessed the relevance, clarity, and adequacy of each component of the 

model using a Content Validity Index (CVI)(47). A four-point Likert scale was employed, 

in which 1 = not relevant, 2 = somewhat relevant, 3 = quite relevant, and 4 = highly 

relevant. For each item, the CVI was calculated as the proportion of experts who assigned 

a rating of 3 or 4. According to established CVI guidelines, a minimum CVI value of 0.78 

was considered acceptable for validation when the number of experts ranged from 6 to 10. 

Items scoring below this threshold were revised or refined based on expert feedback to 

ensure the accuracy and appropriateness of the final model. 

Ethical Statement 

This study did not involve human participants or identifiable data and, therefore, did not 

require ethical approval. 

 

RESULTS 

All components related to the model's structural and computational integrity achieved 

strong expert agreement and exceeded the required CVI threshold. The cost calculation 
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framework, including the identification and integration of technical and operational 

parameters, received unanimous approval (CVI = 1.00), indicating that experts found the 

approach comprehensive and methodologically sound. Likewise, the model's 

applicability to telemedicine environments and the overall usefulness of the framework 

in supporting economic decision-making were fully endorsed by all reviewers. The 

detailed CVI scores for all evaluated components of the model are presented in Table 2. 

 

TABLE III. CONTENT VALIDITY INDEX (CVI) SCORES FOR THE PROPOSED ECONOMIC MODEL 

COMPONENTS 

 

No. Model Component Evaluated Rating 3 or 4 CVI Value Acceptable (≥ 0.78) 

1 Definition of cost parameters 8 / 9 0.89 Accepted 
2 Structure of the cost calculation model 9 / 9 1.00 Accepted 
3 Accuracy of economic benefit estimation 8 / 9 88.89 Accepted 
4 Clarity of the break-even formula 9 / 9 0.89 Accepted 
5 Logical consistency of variable definitions 7 / 9 0.78 Accepted 
6 Applicability of the model in telemedicine 9 / 9 1.00 Accepted 
7 Clinical relevance of error-reduction metrics 8 / 9 88.89 Accepted 
8 Suitability of computational workflow 8 / 9 88.89 Accepted 
9 Overall usefulness of the model 9 / 9 1.00 Accepted 

 

All items supporting the model's structural and computational validity achieved high 

expert consensus and exceeded the minimum threshold for CVI. The cost calculation 

framework, including the identification and integration of technical and operational 

parameters, received unanimous approval, with a CVI of 1.00 for comprehensiveness and 

methodological soundness. Similarly, the model's applicability in telemedicine 

environments and the overall usefulness of the framework for economic decision-making 

were fully supported by all reviewers. 

Items related to the clarity of the break-even formula, the clinical relevance of error-

reduction metrics, and the suitability of the computational workflow demonstrated 

similarly strong validation scores, with CVI values ranging from 0.89 to 0.89. These high 

ratings denote expert consensus that the model effectively captures the essential financial 

mechanisms required for evaluating AI-based image-processing systems in telemedicine. 

The accuracy of the economic benefit estimation also received a high CVI score of 0.89, 

reinforcing confidence in the model's analytical foundations. 

DISCUSSION 

In this study, a comprehensive and innovative model was developed for the economic 

evaluation of telemedicine systems based on medical image processing. For the first time, 

the model integrates technical variables, including software development duration, 

number of programmers, server costs, and AI-based diagnostic error reduction, with 

economic indicators. The model not only calculates the total implementation cost but also 

estimates the break-even point and the number of consultations required to achieve a 

return on investment. Expert assessments demonstrated that all components of the model 

are acceptable in terms of variable accuracy, computational structure, and usability in 

clinical settings, and in many cases, they were rated as excellent. Therefore, it can serve 

as a reliable decision-making tool in the digital health domain. 
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The findings indicate that implementing telemedicine systems based on medical image 

processing requires highly powerful computational and storage infrastructures, which 

significantly increase both the initial and maintenance costs of the system. This result 

aligns with the study by Scholl et al. (2011), who emphasized that medical image 

processing demands expensive servers and computing equipment due to high data 

volumes and algorithmic complexity. (48) Furthermore, evidence from studies in the field 

of tele-ultrasonography shows that the use of deep learning models requires high-

performance GPUs and substantial bandwidth, imposing considerable financial burdens 

(49). However, our findings are not fully consistent with the perspective of Luo et al. 

(2023), who suggest that employing edge–cloud architectures can relatively reduce costs 

(50). Even with edge processing, the need for central servers for final processing and data 

integration persists, and the possibility of significantly eliminating or reducing centralized 

infrastructure remains limited. 

Within the framework of the economic model developed in this study, it was found that 

the majority of the initial investment is allocated to the development of specialized 

software and the provision of computational infrastructure. This finding is consistent with 

the results of Deserno et al. (2013), who demonstrated that the increasing volume of 

medical imaging data necessitates highly powerful servers and computing environments, 

advanced software tools, and high-performance storage infrastructure (51). Studies by 

Campbell et al. (2019) and Garbey et al. (2024) also indicate that designing image 

analysis software for telemedicine requires relatively substantial computational resources 

and development infrastructure. Therefore, the cost share of software and computational 

capacity represents a significant portion of the initial investment 

There are other important costs, such as bandwidth and data transmission costs, data costs, 

recruitment and retention costs, equipment depreciation and upgrades, regulatory 

compliance, and user training, and these secondary yet significant costs affect all 

telemedicine projects economically. These findings corroborate those presented by 

Rosaline and Paulraj (2025), who also highlighted the need for expensive, high-capacity 

network infrastructure to transmit large volumes of imaging data, although some of these 

costs may be mitigated by smart compression. Moreover, expenses related to compliance 

with regulations such as HIPAA and GDPR, as well as the need for personnel training, 

play a crucial role in determining the initial break-even point of such systems (52, 53). 

This study demonstrates that the economic evaluation of medical image-based 

telemedicine systems should extend beyond initial costs to include technical, 

infrastructural, and operational factors such as software development, computational 

infrastructure, maintenance, data security, regulatory compliance, and user training. The 

proposed model integrates these variables into a quantitative framework, enabling precise 

estimation of the break-even point, return on investment, and financial reliability. 

Findings also highlight that even with distributed and edge computing technologies, 

reliance on central infrastructure and high-performance resources remains significant, and 

relative savings cannot replace essential hardware and software investments. Overall, the 

study emphasizes the need for tailored economic models that comprehensively capture 

all components of telemedicine systems and serve as practical, reliable tools for strategic 

decision-making.  
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Limitations 

This study had several limitations. The proposed cost model is based on theoretical 

parameters rather than real implementation data, which may limit its applicability in 

different telemedicine settings. Moreover, healthcare costs, reimbursement structures, 

and clinical guidelines vary widely across regions and institutions, making it impossible 

to achieve precise, fully generalizable cost estimates. The economic and technical 

variables used—such as server cost, programmer workload, and diagnostic error 

reduction—are averaged estimates and may differ in real-world scenarios. The literature 

search was also limited to major English-language databases, potentially missing studies 

from other sources. Additionally, expert validation was conducted with a relatively small 

group of specialists, which may not reflect broader professional perspectives. 

CONCLUSION 

The economic evaluation of remote medical image-based telemedicine systems 

involves more than just the initial costing of the software and the development of 

computing architecture. There are ongoing costs. There are ongoing costs for maintaining 

and updating the software and architecture, as well as regulatory oversight. Even with 

edge and distributed computing, there must still be a central computing resource. The 

model suggested offers a good balance and converges toward the practical, allowing a 

robust assessment of multiple, interrelated economic targets such as ROI, break-even, and 

financial viability and reliability. 
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